Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Recent band structure calculations have suggested the potential for band tuning in the chiral semiconductor Ag3AuTe2 to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag3AuTe2 and investigate its transport and optical properties and mechanical compressibility. Transport measurements reveal the semiconducting behavior of Ag3AuTe2 with high resistivity and an activation energy Ea of 0.2 eV. The optical bandgap determined by diffuse reflectance measurements is about three times wider than the experimental Ea. Despite the difference, both experimental gaps fall within the range of predicted bandgaps by our first-principles density functional theory (DFT) calculations employing the Perdew–Burke–Ernzerhof and modified Becke–Johnson methods. Furthermore, our DFT simulations predict a progressive narrowing of the bandgap under compressive strain, with a full closure expected at a strain of −4% relative to the lattice parameter. To evaluate the feasibility of gap tunability at such substantial strain, the high-pressure behavior of Ag3AuTe2 was investigated by in situ high-pressure x-ray diffraction up to 47 GPa. Mechanical compression beyond 4% resulted in a pressure-induced structural transformation, indicating the possibility of substantial gap modulation under extreme compression conditions.more » « less
-
- (Ed.)The cubic Laves phase compound CeRu2 with a Kagome substructure of Ru has been investigated to understand myriad fascinating phenomena resulting from competition among its various physical and geometric features. Such phenomena include flat bands, van Hove singularities, Dirac cones, reentrant superconductivity, magnetism, the Fulde–Ferrell–Larkin–Ovchinnikov state, valence fluctuations, time-irreversible anisotropic s-state superconductivity, etc. Extensive studies have thus been carried out since 1958 when the highly unusual coexistence of superconductivity and ferromagnetism was proposed for the mixed compounds (Ce,Gd)Ru2. Activity has accelerated in recent years due to increasing interest in topological states in superconductors. However, there has been little investigation of the mutual influence of these fascinating states. Therefore, we systematically investigated the superconductivity and possible Fermi surface topological change in CeRu2 via magnetic, resistivity, and structural measurements under pressure up to ~168 GPa. An unusual phase diagram that suggests an intriguing interplay between the compound’s superconducting order and Fermi surface topological order has been constructed. A resurgence in its superconducting transition temperature was observed above 28 GPa. Our experiments have identified a structural transition above 76 GPa and a few tantalizing phase transitions driven by high pressure. Our high-pressure results further suggest that superconductivity and Fermi surface topology in CeRu2 are strongly intertwined,more » « less
-
- (Ed.)Pressure is a unique tuning parameter for probing the properties of materials, and it has been particularly useful for studies of electronic materials such as high-temperature cuprate superconductors. Here we report the effects of quasihydrostatic compression produced by a neon pressure medium on the structures of bismuth-based high-Tc cuprate superconductors with the nominal composition Bi2Sr2Can−1CunO2n+4+δ (n = 1, 2, 3) up to 155 GPa. The structures of all three compositions obtained by synchrotron x-ray diffraction can be described as pseudotetragonal over the entire pressure range studied. We show that previously reported pressure-induced distortions and structural changes arise from the large strains that can be induced in these layered materials by nonhydrostatic stresses. The pressure-volume equations of state (EOS) measured under these quasihydrostatic conditions cannot be fit to single phenomenological formulation over the pressure ranges studied, starting below 20 GPa. This intrinsic anomalous compression as well as the sensitivity of Bi2Sr2Can−1CunO2n+4+δ to deviatoric stresses provide explanations for the numerous inconsistencies in reported EOS parameters for these materials. We conclude that the anomalous compressional behavior of all three compositions is a manifestation of the changes in electronic properties that are also responsible for the remarkable nonmonotonic dependence of Tc with pressure, including the increase in Tc at the highest pressures studied so far for each. Transport and spectroscopic measurements up to megabar pressures are needed to fully characterize these cuprates and explore higher possible critical temperatures in these materials.more » « less
An official website of the United States government
